Bienvenidos al Taller de Astronomía del Aranguren

En este espacio virtual vamos registrando las actividades que realizamos en el taller de astronomía para 4º de E.S.O. de NUESTRO INSTITUTO
Para que navegues adecuadamente por el te sugiero que vayas al apartado CURRÍCULO. Aquí estan consignados los apartados en los que estamos trabajando.



miércoles, 15 de diciembre de 2010

¿Dónde está todo el mundo?

El descubrimiento por investigadores de la NASA de una bacteria capaz de alimentarse de arsénico en el lago Mono de California -y el escepticismo con que otros científicos han recibido el hallazgo- es el último capítulo de una historia con un argumento tenaz: la ampliación progresiva de las fronteras de la biosfera, o el conjunto de hábitats que puede ocupar la vida.

En los últimos tiempos, los científicos han hallado signos de vida microbiana en unos entornos insospechados, considerados inhabitables durante casi toda la historia de la biología. Estos incluyen unas aguas a temperaturas de 113 grados centígrados, condiciones extremas de acidez o salinidad y las entrañas subterráneas más profundas que han alcanzado de momento las sondas, a más de 1.600 metros bajo el suelo submarino.

También hay bacterias, como Deinococcus radiodurans, capaces de recomponer su genoma destrozado por unos niveles de radiación letales para casi todas las formas vivas, y complejas ecologías microbianas perfectamente adaptadas a las venenosas aguas piríticas de Río Tinto, en Huelva.

Todas estas formas de vida en condiciones extremas son de particular interés para la astrobiología, la disciplina científica que busca, o se prepara para buscar, formas de vida en otros planetas del Sistema Solar.

El 14 de mayo de 1864, un objeto celeste de unos 12 kilos -un tamaño considerable- se hizo aparente en el cielo del sur de Francia y se desintegró en una veintena de fragmentos que cayeron a la vista de todo el mundo en las cercanías del pueblecito de Orgueil, unos 100 kilómetros al norte de los Pirineos, no lejos de Toulouse.

Desde el primer momento resultó obvio que el meteorito estaba hecho de sustancias orgánicas, el tipo de moléculas basadas en cadenas de carbono que constituyen a todos los seres vivos. Los fragmentos, por ejemplo, podían cortarse con facilidad con un simple cuchillo, y podían usarse para dibujar como si fueran un lápiz. Los científicos franceses se interesaron por el meteorito, y Marcellin Berthelot y otros destacados químicos de la época confirmaron pronto la presencia abundante de materiales orgánicos en las muestras.

Estos hechos llamaron la atención de Louis Pasteur, uno de los padres de la microbiología. Pasteur había refutado poco antes la teoría de la generación espontánea, al demostrar que los gusanos y microorganismos que aparecían al pudrirse la carne no provenían de la carne, sino de insectos que ponían sus huevos sobre ella, o de bacterias también llegadas del exterior que se reproducían óptimamente alimentándose de ese material en descomposición.

Pasteur pensaba que toda vida provenía de otra vida y, como extrapolación de esa idea, era contrario a la teoría de que la vida primigenia se hubiera originado en la Tierra a partir de la materia inerte. El meteorito de Orgueil sugería la posibilidad obvia de que la vida terrestre hubiera llegado del espacio exterior, y el gran científico puso lo mejor de su sabiduría y su técnica experimental a la tarea de buscar microbios activos en el interior del meteorito de Orgueil. Sin éxito.

Pero Richard Hoover, de la NASA, y Alexéi Rozanov, del Instituto Paleontológico de Moscú, presentaron en agosto de 2004 en Denver (Estados Unidos) una ponencia titulada Nuevas evidencias de la presencia de microfósiles indígenas en las condritas carbonáceas.

Las condritas carbonáceas son los meteoritos más infrecuentes -hay menos de cien impactos registrados en el planeta en toda la historia- y provienen de cuerpos celestes, probablemente cometas, que llevan vagando por el espacio desde los orígenes del sistema solar, hace 4.600 millones de años. La más famosa de todas las condritas carbonáceas es justamente el meteorito de Orgueil, al que se refería el trabajo de Hoover y sus colegas de la NASA.

Hoover y Rozanov han descubierto en el interior del meteorito Orgueil los restos fósiles de unas estructuras biológicas muy bien conocidas por los microbiólogos: las alfombras de cianobacterias, unas asociaciones de microbios fotosintéticos (capaces de convertir la luz solar en energía biológica) que se cuentan entre los más antiguos rastros de vida fósil hallados en la Tierra, en depósitos de hace unos 3.500 millones de años. ¿Llegaría la vida a la Tierra en un meteorito similar al Orgueil, pero caído hace más de 4.000 millones de años?

"Los cometas colisionan ocasionalmente con otros cuerpos del Sistema Solar; si ese cuerpo es, por ejemplo, Europa [un satélite de Júpiter con agua líquida, donde los científicos creen posible que haya vida microbiana], es perfectamente posible que durante la colisión el cometa capture formas de vida autóctonas que luego puedan crecer y fosilizarse en el propio cometa; las colisiones pueden también ser indirectas, como sugiere el hecho de que muchos cometas tienen numerosos cráteres; los cometas son transportadores de vida de un lugar a otro del Sistema Solar, no sus lugares de origen".

Hoover y sus colaboradores han presentado estos hallazgos en publicaciones de la NASA y actas de congresos científicos (por ejemplo). "Los enviamos a Nature y fueron rechazados", dice con resignación. Al científico le parece "muy triste" la situación descrita por una famosa frase del astrofísico Carl Sagan: "Los anuncios extraordinarios requieren evidencias extraordinarias". Dice que eso no ocurre en matemáticas: "Si tú demuestras un teorema, no importa lo extraordinario que sea: lo has demostrado y ya está".

Todos estos hallazgos, desde los más aceptados hasta los más polémicos, suscitan inevitablemente algunas de las cuestiones más profundas, ancestrales y trascendentales que cabe imaginar sobre nuestra posición en el cosmos: ¿Es la vida una rareza de nuestro planeta? ¿O es un fenómeno generalizado, casi omnipresente, en el universo? ¿Cuán probable es su emergencia a partir de la mera química de la materia inerte? ¿Estamos solos? Si no es así, y expresándolo mediante la paradoja planteada hace medio siglo por el gran físico italoamericano Enrico Fermi: "¿Dónde está todo el mundo?".

La pequeña leyenda de esta paradoja dice así: en 1950, Fermi salió a comer con dos colegas del laboratorio de Los Álamos. Uno de ellos era Edward Teller, que después alcanzaría la fama mundial como creador de la bomba de hidrógeno. En mitad de la comida, Fermi se quedó pensando: si la Vía Láctea tiene más de 200.000 millones de estrellas, la mitad con planetas en órbita; y si parte de ellos están en la zona compatible con la existencia de agua líquida, como la Tierra; y si en la Tierra surgió la vida, y después la inteligencia, lo mismo ha debido ocurrir en varios otros millones de planetas de nuestra galaxia hace miles de millones de años; y como colonizar la galaxia solo sería cuestión de unos pocos millones de años, los extraterrestres ya deberían haber llegado aquí. Punto en el que Fermi abandonó el cálculo mental para pronunciar en voz alta: "¿Dónde está todo el mundo?". La paradoja de Fermi.

El astrofísico Frank Drake formalizó en 1961 el cálculo mental de Fermi, en lo que se conoce como la ecuación de Drake. La fórmula no es más que una multiplicación de una ristra de siete factores (la fracción de estrellas que tienen planetas; multiplicado por la fracción de planetas aptos para la vida en cada sistema solar; multiplicado por la fracción de esos planetas en los que de hecho surge la vida, etcétera), y calcula el número de civilizaciones alienígenas que debería haber ahora mismo en nuestra galaxia. Las que hay de hecho, por todo lo que sabemos hasta ahora, son una o ninguna, incluyendo la nuestra.


Es un resumen de un artículo publicado en el diario español EL PAÍS, el día 12 de diciembre de 2010 y firmado por Javier Sampedro

La nave 'Voyager 1' llega a los confines del Sistema Solar, donde se detiene el viento de la estrella

La nave automática Voyager 1 lleva 33 años viajando por el Sistema Solar, hacia fuera, y pasó cerca de Júpiter y Saturno en 1979 y 1980, respectivamente. Ahora ha llegado a una zona, a 17.381 millones de kilómetros del Sol, donde se detiene el viento de la estrella. Los científicos que aún siguen pendientes de la misión afirman que se trata de un hito en su trayectoria, camino de salir definitivamente del Sistema Solar, dentro de unos cuatro años. La nave de la NASA viaja a una velocidad de 61.000 kilómetros por hora.
El Sol emite un flujo de partículas cargadas que forman una burbuja envolvente alrededor del Sistema Solar; se llama heliosfera Es un gas caliente de partículas cargadas que viaja a velocidades supersónicas hasta que llega a una zona de onda de choque a partir de la cual se ralentiza y se calienta en la heliopausa. LaVoyager 1 entró en esa región en diciembre de 2004, informa la NASA.
La entrada de la Voyager 1 en el espacio interestelar se apreciará en los registros por una caída repentina de la densidad de partículas cargadas calientes a la vez que aumentará la densidad de partículas frías. Los científicos están utilizando modelos de la estructura del Sistema Solar para determinar cuando cruzará la nave esa frontera, pero sus estimaciones actuales indican que será en 2014.

Es un resumen de una noticia publicada en el diario español EL PAÍS, edición digital, el día 13 de diciembre de 2010, y firmada por A.R.